Harshdeep Sokhey

http://linkedin.com/in/harshdeepsokhey | http://github.com/sukhoi | http://cse.buffalo.edu/~hsokhey

Phone Number: +1 (716) 597-3405, Email: hsokhey@buffalo.edu

SUMMARY

Computer Engineer with 3+ years of industry experience, working towards a Master's Degree in Computer Science with specialization in Scalable Machine Learning and Deep Learning. Working as a Graduate Student Researcher at the Center for Unified Biometrics and Sensors (CUBS) under the supervision of Dr. Venu Govindaraju.

EDUCATION

Master of Science, Computer Science Relevant Courses: Machine Learning, Applied Deep Learning, Probabilistic Graphical Models Algorithms, Parallel and Distributed Systems, Operating Systems, Computer Vision and Pattern Recognition,

Birla Institute of Technology, Ranchi, India

Bachelor of Engineering, Computer Science and Engineering

University at Buffalo, The State University of New York

TECHNOLOGY & SKILLS

C++, Python, C, Java, MATLAB, Linux, Shell-Scripting, Docker, Pytorch, Tensorflow, Apache Spark, , CUDA, CMake, Git, SVN

CERTIFICATIONS

Deep Learning Specialization (5 courses on Deep Learning by Coursera)

RESEARCH EXPERIENCE

Graduate Student Researcher (CUBS, University at Buffalo) Working on Face Detection algorithms for detecting tiny faces using WIDER dataset [Pytorch, Caffe, CUDA C++]

Graduate Student Researcher (DRoNES Lab, University at Buffalo)

Worked on compiling a dataset with RGBD-Wifi information for benchmarking Wi-Fi augmented visual sensing algorithms. Developed a dataset toolkit for processing the RGBW-W dataset without a ROS platform. [ROS, Python, C++]

PROFESSIONAL EXPERIENCE

Senior Software Engineer (Aricent Technologies, Gurgaon, India) (January 2014 - November 2016) Designed and Implemented the Pre-Silicon Verification Framework for PHY Controller for Intel LTE Modem [C++] Designed and Implemented the Uplink Receiver Chain processing modules for LTE eNodeB. [C, DSP, ASM, Shell Scripting, MATLAB]

PROJECTS IN SOFTWARE DEVELOPMENT

Online Doodle Classification using Sequence Models: Developed a Variational Autoencoder framework with Recurrent Neural Network cells, generating feature representations for doodle images, for performing online classification of doodles. The The model was tested on Google's Quick draw dataset. [Pytorch, CUDA C++]

Crowd-Counting using Density estimation: Implemented the state-of-the-art Switch-CNN model to perform crowd-counting. The model was trained on ShanghaiTech, UCF CC 50 and UCSD Pedestrian dataset. [Pytorch, CUDA C++]

Multivariate Gaussian Kernel Density Estimation using CUDA: Utilized Kernel Density Estimation on NHANE's dataset on Serum Level for Adult females to predicate medical conditions based on varying Serum Levels in females. [CUDA C++]

Unsupervised Spectral Classification for APOGEE dataset (NIPS 2017 Implementation Challenge): Designed an unsupervised algorithm for classifiving spectral data from APOGEE dataset (DR12), verifying the results published in the paper. [Python, Nvidia **TITAN Xp GPU]**

Convolutional Neural Network for image classification: Implemented a Convolutional Network to classify images into "wearing eye-glasses" and "not wearing eye-glasses" on the 'CelebFaces Dataset (CelebA)' with an accuracy of 93.3% on the 87K image dataset. [Keras]

Connected Components using Map-Reduce: Verified the results of a research paper on Connected Components using Map-Reduce. Tested the implementation against 40M node Twitter Followers graph and 4B node Document Similarity [Python, Spark]

(B7H9E5QW4QSH, June 2018)

(Expected August 2017 - February 2019)

(June 2018 – Present)

(July 2009 - June 2013)

(December 2017 – May 2018)